Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 183: 105862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33716123

RESUMO

XanA is an FeII- and α-ketoglutarate-dependent enzyme responsible for the conversion of xanthine to uric acid. It is unique to fungi and it was first described in Aspergillus nidulans. In this work, we present the preliminary characterization of the XanA enzyme from Aspergillus oryzae, a relevant fungus in food production in Japan. The XanA protein (GenBank BAE56701.1) was expressed as a recombinant protein in Escherichia coli BL21 (DE3) Arctic cells. Initial purification assays showed low protein solubility; therefore, the buffer composition was optimized using a fluorescence-based thermal shift assay. The protein was stabilized in solution in the presence of either 600 µM xanthine, 1 M NaCl, 600 µM α-ketoglutarate or 20% glycerol, which increases the melting temperature (Tm) by 2, 4, 5 and 6 °C respectively. The XanA protein was purified by following a three-step purification protocol. The nickel affinity purified protein was subjected to ion-exchange chromatography once the N-terminal 6XHis-tag had been successfully removed, followed by size-exclusion purification. Dynamic light scattering experiments showed that the purified protein was monodisperse and behaved as a monomer in solution. Preliminary activity assays in the presence of xanthine, α-ketoglutarate, and iron suggest that the enzyme is an iron- and α-ketoglutarate-dependent xanthine dioxygenase. Furthermore, the enzyme's optimum activity conditions were determined to be 25 °C, pH of 7.2, HEPES buffer, and 1% of glycerol. In conclusion, we established the conditions to purify the XanA enzyme from A. oryzae in its active form from E. coli bacteria and determined the optimal activity conditions.


Assuntos
Aspergillus oryzae , Dioxigenases , Proteínas Fúngicas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Dioxigenases/biossíntese , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ferro/química , Ferro/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
2.
Biochimie ; 180: 90-103, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33122105

RESUMO

Gentisate 1,2-dioxygenases belong to the class III ring-cleaving dioxygenases catalyzing key reactions of aromatic compounds degradation by aerobic microorganisms. In the present work, the results of complete molecular, structural, and functional investigations of the gentisate 1,2-dioxygenase (rho-GDO) from a gram-positive bacterium Rhodococcus opacus 1CP growing on 3-hydroxybenzoate as a sole source of carbon and energy are presented. The purified enzyme showed a narrow substrate specificity. Among fourteen investigated substrate analogues only gentisate was oxidized by the enzyme, what can be potentially applied in biosensor technologies. The rho-GDO encoding gene was identified in the genomic DNA of the R. opacus 1CP. According to phylogenetic analysis, the rho-GDO belongs to the group of apparently most recently acquired activities in bacterial genera Rhodococcus, Arthrobacter, Corynebacterium, Nocardia, Amycolatopsis, Comamonas, and Streptomyces. Homology modeling the rho-GDO 3D-structure demonstrates the composition identity of the first-sphere residues of the active site of rho-GDO and salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans (RCSB PDB: 2PHD), despite of their different substrate specificities. The phenomenon described for the first time for this family of enzymes supposes a more complicated mechanism of substrate specificity than previously imagined, and makes the rho-GDO a convenient model for a novel direction of structure-function relationship studies.


Assuntos
Dioxigenases/química , Dioxigenases/metabolismo , Rhodococcus/enzimologia , Rhodococcus/genética , Domínio Catalítico , Clonagem Molecular , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Cinética , Modelos Moleculares , Filogenia , Conformação Proteica , Rhodococcus/crescimento & desenvolvimento , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Chembiochem ; 21(14): 1981-1987, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32189465

RESUMO

Expanding the reaction scope of natural metalloenzymes can provide new opportunities for biocatalysis. Mononuclear non-heme iron-dependent enzymes represent a large class of biological catalysts involved in the biosynthesis of natural products and catabolism of xenobiotics, among other processes. Here, we report that several members of this enzyme family, including Rieske dioxygenases as well as α-ketoglutarate-dependent dioxygenases and halogenases, are able to catalyze the intramolecular C-H amination of a sulfonyl azide substrate, thereby exhibiting a promiscuous nitrene transfer reactivity. One of these enzymes, naphthalene dioxygenase (NDO), was further engineered resulting in several active site variants that function as C-H aminases. Furthermore, this enzyme could be applied to execute this non-native transformation on a gram scale in a bioreactor, thus demonstrating its potential for synthetic applications. These studies highlight the functional versatility of non-heme iron-dependent enzymes and pave the way to their further investigation and development as promising biocatalysts for non-native metal-catalyzed transformations.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Iminas/metabolismo , Metaloproteínas/metabolismo , Aminação , Biocatálise , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/isolamento & purificação , Iminas/química , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
4.
Methods Mol Biol ; 2083: 75-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745914

RESUMO

Carotenoid cleavage dioxygenases (CCDs) are nonheme iron enzymes that catalyze double bond processing of carotenoids and their apocarotenoid metabolites. Mammalian genomes encode three members of this protein family, namely BCO1, BCO2, and RPE65. Mutations and genetic polymorphism in the corresponding genes are associated with inherited blinding diseases, vitamin A deficiency, and high carotenoid plasma levels. Here we describe a method for the heterologous expression of mammalian BCO1 and BCO2 in E. coli and the biochemical characterization of these recombinant enzymes. Dissecting the enzymatic properties of CCDs will advance our knowledge of the biochemical processes that are govern by these disease-associated enzymes and may assist the design of interventions directed against these disease states.


Assuntos
Dioxigenases/genética , Dioxigenases/metabolismo , Expressão Gênica , Animais , Carotenoides/química , Carotenoides/metabolismo , Cromatografia Líquida de Alta Pressão , Dioxigenases/química , Dioxigenases/isolamento & purificação , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos , Família Multigênica , Proteínas Recombinantes de Fusão , Transformação Bacteriana
5.
Biochem Biophys Res Commun ; 507(1-4): 267-273, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30446218

RESUMO

Hydroxyquinol 1,2-dioxygenase is a key enzyme in the hydroxyquinol pathway of p-nitrophenol (PNP) degradation, and catalyzes the ring cleavage of benzenetriol to maleylacetate. Here, we report the first structure of a hydroxyquinol 1,2-dioxygenase from the Gram-negative bacterium Pseudomonas putida DLL-E4 (PnpC) at the resolution of 2.1 Å. The tertiary structure of PnpC resembles that of the homologous intradiol dioxygenases. The catalytic Fe(III) is pentacoordinated by the conserved Tyr160, Tyr194, His218 and His220, the citrate anion and one water molecule. Among the residues expected to interact with the substrate, structural comparison with the (chloro)catechol dioxygenases suggested that Asp80, Thr81 and Val248 are responsible for the substrate specificity. Moreover, truncation of the N-terminal α-helix of PnpC suggested the N-terminal domain is required for its soluble expression and enzyme catalysis. Our results might provide insights in the substrate recognition and rational design of this enzyme class to be used in bioremediation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Dioxigenases/química , Dioxigenases/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Modelos Moleculares , Mutação/genética , Domínios Proteicos , Especificidade por Substrato
6.
J Vis Exp ; (140)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346405

RESUMO

Oxygen-sensitive proteins, including those enzymes which utilize oxygen as a substrate, can have reduced stability when purified using traditional aerobic purification methods. This manuscript illustrates the technical details involved in the anaerobic purification process, including the preparation of buffers and reagents, the methods for column chromatography in a glove box, and the desalting of the protein prior to kinetics. Also described are the methods for preparing and using an oxygen electrode to perform kinetic characterization of an oxygen-utilizing enzyme. These methods are illustrated using the dioxygenase enzyme DesB, a gallate dioxygenase from the bacterium Sphingobium sp. strain SYK-6.


Assuntos
Dioxigenases/antagonistas & inibidores , Dioxigenases/metabolismo , Inibidores Enzimáticos/farmacologia , Oxigênio/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Dioxigenases/isolamento & purificação , Eletrodos , Cinética , Oxirredução , Sphingomonadaceae/enzimologia , Sphingomonadaceae/metabolismo , Especificidade por Substrato
7.
J Am Chem Soc ; 140(34): 10909-10914, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30067334

RESUMO

Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final α-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Antineoplásicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Benzopiranos/química , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Glicosídeos/biossíntese , Glicosídeos/química , Modelos Químicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Streptomyces/enzimologia , Streptomyces/genética
8.
J Am Chem Soc ; 140(30): 9743-9750, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29972643

RESUMO

AndA, an Fe(II)/α-ketoglutarate (αKG)-dependent enzyme, is the key enzyme that constructs the unique and congested bridged-ring system of anditomin (1), by catalyzing consecutive dehydrogenation and isomerization reactions. Although we previously characterized AndA to some extent, the means by which the enzyme facilitates this drastic structural reconstruction have remained elusive. In this study, we have solved three X-ray crystal structures of AndA, in its apo form and in the complexes with Fe(II), αKG, and two substrates. The crystal structures and mutational experiments identified several key amino acid residues important for the catalysis and provided insight into how AndA controls the reaction. Furthermore, computational calculations validated the proposed reaction mechanism for the bridged-ring formation and also revealed the requirement of a series of conformational changes during the transformation.


Assuntos
Dioxigenases/metabolismo , Compostos Heterocíclicos de Anel em Ponte/metabolismo , Enzimas Multifuncionais/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Teoria da Densidade Funcional , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Emericella/enzimologia , Compostos Heterocíclicos de Anel em Ponte/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Modelos Químicos , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/isolamento & purificação , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/isolamento & purificação , Penicillium/enzimologia , Ligação Proteica
9.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038259

RESUMO

The 1,125-bp mabB gene encoding 5-aminosalicylate (5ASA) 1,2-dioxygenase, a nonheme iron dioxygenase in the bicupin family that catalyzes the cleavage of the 5ASA aromatic ring to form cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate in the biodegradation of 3-aminobenzoate, was cloned from Comamonas sp. strain QT12 and characterized. The deduced amino acid sequence of the enzyme has low sequence identity with that of other reported ring-cleaving dioxygenases. MabB was heterologously expressed in Escherichia coli cells and purified as a His-tagged enzyme. The optimum pH and temperature for MabB are 8.0 and 10°C, respectively. FeII is required for the catalytic activity of the purified enzyme. The apparent Km and Vmax values of MabB for 5ASA are 52.0 ± 5.6 µM and 850 ± 33.2 U/mg, respectively. The two oxygen atoms incorporated into the product of the MabB-catalyzed reaction are both from the dioxygen molecule. Both 5ASA and gentisate could be converted by MabB; however, the catalytic efficiency of MabB for 5ASA was much higher (∼70-fold) than that for gentisate. The mabB-disrupted mutant lost the ability to grow on 3-aminobenzoate, and mabB expression was higher when strain QT12 was cultivated in the presence of 3-aminobenzoate. Thus, 5ASA is the physiological substrate of MabB.IMPORTANCE For several decades, 5-aminosalicylate (5ASA) has been advocated as the drug mesalazine to treat human inflammatory bowel disease and considered the key intermediate in the xenobiotic degradation of many aromatic organic pollutants. 5ASA biotransformation research will help us elucidate the microbial degradation of these pollutants. Most studies have reported that gentisate 1,2-dioxygenases (GDOs) can convert 5ASA with significantly high activity; however, the catalytic efficiency of these enzymes for gentisate is much higher than that for 5ASA. This study showed that MabB can convert 5ASA to cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, incorporating two oxygen atoms from the dioxygen molecule into the product. Unlike GDOs, MabB uses 5ASA instead of gentisate as the primary substrate. mabB is the first reported 5-aminosalicylate 1,2-dioxygenase gene.


Assuntos
Comamonas/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Biocatálise , Biodegradação Ambiental , Clonagem Molecular , Comamonas/efeitos dos fármacos , Comamonas/genética , Comamonas/crescimento & desenvolvimento , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Gentisatos/metabolismo , Cinética , Mesalamina/metabolismo , Mutação , Oxigênio/metabolismo , Especificidade por Substrato , meta-Aminobenzoatos/metabolismo , meta-Aminobenzoatos/farmacologia
10.
FEBS Lett ; 591(5): 792-800, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186640

RESUMO

Strigolactones are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured ß-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used 13 C and 18 O-labeling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation.


Assuntos
Carotenoides/química , Dioxigenases/química , Lactonas/síntese química , Reguladores de Crescimento de Plantas/síntese química , Proteínas de Plantas/química , beta Caroteno/química , Biocatálise , Isótopos de Carbono , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Isótopos de Oxigênio , /enzimologia , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
11.
Biochemistry ; 55(9): 1362-71, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26878277

RESUMO

Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.


Assuntos
Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Dioxigenases/química , Pseudomonas aeruginosa/enzimologia , Ácido 3-Mercaptopropiônico/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia
12.
J Agric Food Chem ; 63(37): 8275-82, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26359684

RESUMO

Bay laurel (Laurus nobilis L.) is an agriculturally important tree used in food, drugs, and the cosmetics industry. Many of the health beneficial properties of bay laurel are due to volatile terpene metabolites that they contain, including various norisoprenoids. Despite their importance, little is known about the norisoprenoid biosynthesis in Laurus nobilis fruits. We found that the volatile norisoprenoids 6-methyl-5-hepten-2-one, pseudoionone, and ß-ionone accumulated in Laurus nobilis fruits in a pattern reflecting their carotenoid content. A full-length cDNA encoding a potential carotenoid cleavage dioxygenase (LnCCD1) was isolated. The LnCCD1 gene was overexpressed in Escherichia coli, and recombinant protein was assayed for its cleavage activity with an array of carotenoid substrates. The LnCCD1 protein was able to cleave a variety of carotenoids at the 9,10 (9',10') and 5,6 (5',6') positions to produce 6-methyl-5-hepten-2-one, pseudoionone, ß-ionone, and α-ionone. Our results suggest a role for LnCCD1 in Laurus nobilis fruit flavor biosynthesis.


Assuntos
Dioxigenases/isolamento & purificação , Dioxigenases/metabolismo , Frutas/enzimologia , Laurus/enzimologia , Carotenoides/metabolismo , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Dioxigenases/genética , Escherichia coli/metabolismo , Frutas/química , Expressão Gênica , Norisoprenoides/análise , Norisoprenoides/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Paladar , Volatilização
13.
PLoS One ; 10(9): e0138798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26390211

RESUMO

Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Dioxigenases/metabolismo , Flavoproteínas/metabolismo , Índigo Carmim/metabolismo , Indóis/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Western Blotting , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Relação Dose-Resposta a Droga , Flavoproteínas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Mutação , Óperon/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
14.
Methods Enzymol ; 560: 117-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26253968

RESUMO

N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification in messenger and long noncoding RNAs. There has been a surge of interest toward understanding the biological significance of m(6)A modification. In this chapter, we describe the methods for biochemically studying the recently uncovered m(6)A methyltransferases (METTL3 and METTL14) and demethylases (FTO and ALKBH5). How to express these proteins, perform their biochemistry reactions against various RNA probes, and characterize the methylation and demethylation activity will be discussed.


Assuntos
Adenosina/análogos & derivados , RNA Longo não Codificante/genética , RNA Nuclear/química , Adenosina/química , Adenosina/genética , Homólogo AlkB 5 da RNA Desmetilase , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Catálise , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Metiltransferases/biossíntese , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Proteínas/química , Proteínas/genética , Proteínas/isolamento & purificação , RNA Longo não Codificante/química , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Nuclear/genética
15.
Biotechnol Lett ; 37(10): 1945-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142698

RESUMO

OBJECTIVE: To investigate the conversion of carbazole into 2'-aminobiphenyl-2,3-diol using carbazole dioxygenase (CARDO) that is a multicomponent enzyme consisting of homotrimeric terminal oxygenases (CarAa), a ferredoxin (CarAc) and a ferredoxin reductase (CarAd) unit, encoded by the carAa, carAc and carAd genes, respectively. RESULTS: The enzyme subunits containing a GST tag were expressed independently in E. coli. The expressed proteins were purified by one-step immobilized affinity chromatography and three purified proteins could reconstitute the CARDO activity in vitro and showed activity against carbazole as well as against wide range of polyaromatic compounds. CONCLUSION: This method provides an efficient way to obtain an active carbazole dioxygenase with high yield, high purity and with activity against a wide range of polyaromatic compounds.


Assuntos
Carbazóis/metabolismo , Dioxigenases/isolamento & purificação , Dioxigenases/metabolismo , Pseudomonas/enzimologia , Cromatografia de Afinidade , Clonagem Molecular , Dioxigenases/biossíntese , Dioxigenases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Pseudomonas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Biotechnol Lett ; 37(10): 1993-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26026965

RESUMO

OBJECTIVES: A novel ß-carotene-9,10'-oxygenase (ScBCO2) has been characterized from Saccharomyces cerevisiae ULI3 to convert ß-carotene to ß-apo-10'-carotenal, which is a precursor of the plant hormone strigolactone. RESULTS: The ScBCO2 enzyme was purified to homogeneity by ammonium sulfate precipitation, Q sepharose and Superdex-200 chromatography. The molecular mass of the enzyme was ~50 kDa by SDS-PAGE. The purified ScBCO2 enzyme displayed optimal activity at 45 °C and pH 8. Tween 20 (1%, w/v), Trition X-100 (1%, w/v), Mg(2+) (5 mM), Zn(2+) (5 mM), Cu(2+) (5 mM), Ca(2+) (5 mM) or DTT (5 mM) increased in the activity by 3, 7, 14, 17, 23, 26 and 27%, respectively. ScBCO2 only exhibited cleavage activity towards carotenoid substrates containing two ß-ionone rings and its catalytic efficiency (kcat/Km) followed the order ß-carotene > α-carotene > lutein. CONCLUSION: ScBCO2 could be used as a potential candidate for the enzymatic biotransformation of ß-carotene to ß-apo-10'-carotenal in biotechnological applications.


Assuntos
Carotenoides/metabolismo , Dioxigenases/isolamento & purificação , Dioxigenases/metabolismo , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , beta Caroteno/metabolismo , Precipitação Química , Cromatografia Líquida , Dioxigenases/química , Ativadores de Enzimas/análise , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Peso Molecular , Oxirredução , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato , Temperatura
17.
J Am Chem Soc ; 137(23): 7474-87, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25988744

RESUMO

Dioxygenases catalyze a diverse range of biological reactions by incorporating molecular oxygen into organic substrates. Typically, they use transition metals or organic cofactors for catalysis. Bacterial 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase (HOD) catalyzes the spin-forbidden transfer of dioxygen to its N-heteroaromatic substrate in the absence of any cofactor. We combined kinetics, spectroscopic and computational approaches to establish a novel reaction mechanism. The present work gives insight into the rate limiting steps in the reaction mechanism, the effect of first-coordination sphere amino acids as well as electron-donating/electron-withdrawing substituents on the substrate. We highlight the role of active site residues Ser101/Trp160/His251 and their involvement in the reaction mechanism. The work shows, for the first time, that the reaction is initiated by triplet dioxygen and its binding to deprotonated substrate and only thereafter a spin state crossing to the singlet spin state occurs. As revealed by steady- and transient-state kinetics the oxygen-dependent steps are rate-limiting, whereas Trp160 and His251 are essential residues for catalysis and contribute to substrate positioning and activation, respectively. Computational modeling further confirms the experimental observations and rationalizes the electron transfer pathways, and the effect of substrate and substrate binding pocket residues. Finally, we make a direct comparison with iron-based dioxygenases and explain the mechanistic and electronic differences with cofactor-free dioxygenases. Our multidisciplinary study confirms that the oxygenation reaction can take place in absence of any cofactor by a unique mechanism in which the specially designed fit-for-purpose active-site architecture modulates substrate reactivity toward oxygen.


Assuntos
Biocatálise , Dioxigenases/metabolismo , Oxigênio/metabolismo , Arthrobacter/enzimologia , Dioxigenases/química , Dioxigenases/isolamento & purificação , Estrutura Molecular , Oxigênio/química , Teoria Quântica
18.
Methods Enzymol ; 555: 271-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747485

RESUMO

In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme ß-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.


Assuntos
Proteínas de Arabidopsis/metabolismo , Carbono-Oxigênio Liases/metabolismo , Dioxigenases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Liases/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/química , Arabidopsis/enzimologia , Proteínas de Arabidopsis/isolamento & purificação , Carbono-Oxigênio Liases/isolamento & purificação , Dioxigenases/isolamento & purificação , Ensaios Enzimáticos , Cinética , Liases/isolamento & purificação , Serina O-Acetiltransferase/química
19.
Biotechnol Appl Biochem ; 62(6): 772-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496188

RESUMO

Carotenoids are key precursor for aroma compounds in plants. Although the fruit of Lycium chinense contains numerous carotenoids, the formation mechanism of aroma compounds in L. chinense is still poorly understood. In this study, a new carotenoid cleavage dioxygenase (termed LmCCD1) was identified from the leaves of L. chinense. Expression analysis by semiquantitative PCR reveals that LmCCD1 gene is expressed in different tissues of L. chinense, and dominant expression of LmCCD1 gene was found in leaves, flowers, and ripe fruits. In addition, the expression level of LmCCD1 in fruits is in accordance with the content of ß-ionone. Finally, recombinantly expressed LmCCD1 can cleave ß-carotene and lycopene to produce ß-ionone and pseudoionone in in vitro assays. These results indicate that LmCCD1 a novel carotenoids cleavage dioxygenase gene that may regulate the metabolic pathways responsible for aroma metabolite production (such as ß-ionone and pseudoionone) in L. chinense has been identified.


Assuntos
Dioxigenases/genética , Dioxigenases/metabolismo , Lycium/enzimologia , Lycium/genética , Sequência de Aminoácidos , Clonagem Molecular , Dioxigenases/química , Dioxigenases/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Lycium/metabolismo , Dados de Sequência Molecular , Compostos Orgânicos Voláteis/metabolismo
20.
Appl Microbiol Biotechnol ; 98(17): 7511-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893664

RESUMO

Elemental sulfur (S(0)) oxidation in Acidithiobacillus spp. is an important process in metal sulfide bioleaching. However, the gene that encodes the sulfur dioxygenase (SDO) for S(0) oxidation has remained unclarified in Acidithiobacillus spp. By BLASTP with the eukaryotic mitochondrial sulfur dioxygenases (ETHE1s), the putative sdo genes (AFE_0269 and ACAL_0790) were recovered from the genomes of Acidithiobacillus ferrooxidans ATCC 23270 and Acidithiobacillus caldus MTH-04. The purified recombinant proteins of AFE_0269 and ACAL_0790 exhibited remarkable SDO activity at optimal mildly alkaline pH by using the GSH-dependent in vitro assay. Then, a sdo knockout mutant and a sdo overexpression strain of A. ferrooxidans ATCC 23270 were constructed and characterized. By overexpressing sdo in A. ferrooxidans ATCC 23270, a significantly increased transcriptional level of sdo (91-fold) and a 2.5-fold increase in SDO activity were observed when S(0) was used as sole energy source. The sdo knockout mutant of A. ferrooxidans displayed a slightly reduced growth capacity in S(0)-medium compared with the wild type but still maintained high S(0)-oxidizing activity, suggesting that there is at least one other S(0)-oxidizing enzyme besides SDO in A. ferrooxidans ATCC 23270 cells. In addition, no obvious changes in transcriptional levels of selected genes related to sulfur oxidation was observed in response to the sdo overexpression or knockout in A. ferrooxidans when cultivated in S(0)-medium. All the results might suggest that SDO is involved in sulfide detoxification rather than bioenergetic S(0) oxidation in chemolithotrophic bacteria.


Assuntos
Acidithiobacillus/enzimologia , Dioxigenases/metabolismo , Acidithiobacillus/genética , Dioxigenases/química , Dioxigenases/genética , Dioxigenases/isolamento & purificação , Metabolismo Energético , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Expressão Gênica , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Enxofre/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...